Электромагнитный терроризм: защита и противодействие.. Статья обновлена в 2023 году.

Электромагнитный терроризм: защита и противодействие.

УКОВ Вячеслав Сергеевич, кандидат технических наук

ЭЛЕКТРОМАГНИТНЫЙ ТЕРРОРИЗМ: ЗАЩИТА И ПРОТИВОДЕЙСТВИЕ  

Проблемы борьбы с терроризмом становятся с каждым годом все более актуальными. К сожалению, терроризм развивается как “в глубь”, так и “в ширь”. Еще с десяток лет назад никто из нас не задумывался, что уже существует такая ветвь информационного терроризма как электромагнитный терроризм (ЭТ). А сегодня возможности современных технологий заставляют искать новые методы защиты и противодействия ЭТ. В первую очередь, возникает вопрос: “Как же защитить сами системы защиты, которые становятся все более беззащитными перед лицом электромагнитного терроризма?”

Анализ тенденций развития систем безопасности показывает, что наиболее эффективными по критерию “эффективность качество” являются интегрированные системы безопасности (ИСБ), ядром которых является персональный компьютер [1]. Однако практика эксплуатации ИСБ показывает, что и эти системы, к сожалению, имеют свои слабые места, знание которых, безусловно, поможет пользователю устранить недостатки и повысить оперативно-технические и эксплуатационные характеристики существующих ИСБ. Это, в первую очередь, относится к методам защиты от Силового Деструктивного Воздействия (СДВ) – резкого всплеска напряжения в сетях питания, коммуникаций или сигнализаций систем безопасности с амплитудой, длительностью и энергией всплеска, способными привести к сбоям в работе оборудования или к его полной деградации. В данной статье на примере ИСБ рассмотрены современные возможности защиты от силового деструктивного воздействия, как намеренного, так и стихийного.

Технические средства силового деструктивного воздействия (ТС СДВ) являются, по существу, электромагнитным оружием, которое способно дистанционно и без лишнего шума поразить, например, любую незащищенную систему безопасности. Главное – обеспечить соответствующую мощность электромагнитного импульса. Существенно повышает скрытность нападения то обстоятельство, что анализ повреждений в уничтоженном оборудовании не позволяет однозначно идентифицировать причину возникновения повреждения, так как причиной может быть как преднамеренное (нападение), так и непреднамеренное (например, индукция от молнии) силовое деструктивное воздействие. Это обстоятельство позволяет злоумышленнику успешно использовать ТС СДВ неоднократно.

Основные каналы силового деструктивного воздействия

Проведенный анализ показывает, что компьютер или любое другое электронное оборудование системы безопасности с учетом среды передачи энергии деградации могут быть подвергнуты СДВ по трем основным каналам силового деструктивного воздействия (КСДВ):

  • по сети электропитания (КСДВ № 1);
  • по проводным линиям (КСДВ № 2);
  • по эфиру с использованием мощных коротких электромагнитных импульсов (КСДВ №3).

Основные каналы деструктивного воздействия на интегрированную систему безопасности и рубежи защиты приведены на рис. 1.


Рис. 1. Основные каналы силового деструктивного воздействия
на интегрированную систему безопасности объекта

Как видно из рис. 1, использование СДВ, в принципе, позволяет преодолеть все стандартные рубежи защиты в ИСБ. Все определяется мощностью воздействия, выбранными средствами защиты, имеющимися финансовыми возможностями. Эти обстоятельства определяют выбор стратегии защиты. Рассмотрим одну из них – двухуровневую стратегию защиты (ДСЗ).

При ДСЗ на первом (внутреннем) уровне предусматривается выбор соответствующих технических средств и постоянное тестирование их устойчивости на соответствие нормативным документам (табл. 1). На втором (внешнем) уровне предусматриваются организационно-технические мероприятия, направленные на максимально возможное ослабление или блокирование сигналов от СДВ (в частности, за счет экранирования).

Таблица 1. Основные нормативные документы по проверке устойчивости технических средств к электромагнитным воздействиям

Нормативный документ

Полное название

Краткое содержание

Примечание

ГОСТ 29073-91 Совместимость технических средств (ТС) измерения, контроля и управления промышленными процессами электромагнитная. Устойчивость к электромагнитным помехам (ЭП). Общие положения Устанавливает общие требования к устойчивости ТС на воздействие ЭП

(в соответствии со стандартом МЭК 801)

Рассматриваются ЭП:
  • электростатика;
  • импульсные помехи;
  • радиопомехи;
  • помехи сети электропитания
ГОСТ 29191-91 (МЭК 801-2-88) Совместимость технических средств электромагнитная. Устойчивость к электростатическим разрядам. ТУ и методы испытаний Подразделяет ТС по степени жесткости испытаний в зависимости от напряжения Устанавливается пять степеней жесткости испытаний оборудования для контактного и воздушного разрядов
ГОСТ 29156-91 (МЭК 801 –4-88) Совместимость технических средств электромагнитная. Устойчивость к наносекундным импульсным помехам (НИП). ТУ и методы испытаний Устанавливает общие методы оценки качества функционирования ТС при воздействии НИП на цепи электропитания и ввода/вывода Устанавливается пять степеней жесткости испытаний отдельно для цепей электропитания и ввода/вывода
ГОСТ Р 50627 Распространяется на ТС, подключаемые к электросетям тока частотой 50 Гц при нагрузке не более 16 А (в одной фазе) Устанавливает методы испытаний ТС на устойчивость к воздействию динамических изменений напряжения сети Стандарт определяет пять степеней жесткости испытаний оборудования, отличающихся от ГОСТ 29156
ГОСТ 30374-95/ГОСТ Р 50007-92 Согласно установленным требованиям ТС должны сохранять работоспособность в условиях эксплуатации при воздействии на цепи питания микросекундных импульсных помех в виде молниевых разрядов и коммутационных переходных процессов Устанавливает технические требования (ТТ) к степени жесткости испытаний и методы испытаний на устойчивость к микросекундным импульсным помехам большой энергии Установлено семь степеней жесткости испытаний в зависимости от классов условий эксплуатации (от нулевого до шестого)
ГОСТ 30375-95/ГОСТ Р 50008-92 ТС должны сохранять заданное качество функционирования в условиях эксплуатации при воздействии электромагнитных полей, создаваемых радио- и телевизионными передатчиками, различными установками и другими источниками Регламентирует испытания, обеспечивающие защиту ТС от высокочастотных помех Рассматривается воздействие индустриальных радиопомех в диапазоне 26 – 1000 МГЦ с регламентированными значениями параметров (шесть степеней жесткости)
ГОСТ 29216-91 Радиопомехи индустриальные от оборудования информационной техники (ОИТ). Нормы и методы испытаний Распространяется на оборудование информационной техники и устанавливает нормы и методы измерений индустриальных радиопомех в полосе частот 0,15 – 1000 МГЦ ОИТ подразделяется на два класса:
  • Класс А (вне жилых зданий);
  • Класс В (в жилых зданиях)

Основные организационно-технические рекомендации по защите систем безопасности от СДВ приведены в табл. 2.

Таблица 2. Общие организационно-технические мероприятия по защите от СДВ

№ п/п

Рекомендация по защите систем безопасности от СДВ

Примечание

1. Провести анализ схем электроснабжения, внутренних и внешних коммуникационных каналов объекта, а также линий аварийно-охранно-пожарной сигнализации для выявления возможных путей СДВ К анализу привлекаются квалифицированные специалисты-электрики и связисты
2. Произвести разделение объекта на зоны защиты и рубежи обороны:
  • 1 рубеж – защита по периметру объекта;
  • 2 рубеж – защита поэтажная;
  • 3 рубеж – индивидуальная защита
Для небольших объектов (офисов) 1 рубеж может отсутствовать, а 2 рубеж сократиться до защиты отдельного помещения
3. После проведения монтажа системы безопасности провести тестирование на реальные воздействия Для тестирования используются специальные имитаторы СДВ
4. Разработать соответствующие документы ограничительного характера, направленные на ограничение возможности использования ТС СДВ Например, запретить использование розеток выделенной сети для пылесосов и другого оборудования, в которые могут быть встроены ТС СДВ и др.

Силовое деструктивное воздействие по сети электропитания

Для осуществления СДВ по сетям электропитания используется специальные технические средства, которые подключаются к сети непосредственно с помощью гальванической связи через конденсатор или с помощью индуктивной связи через трансформатор. Прогнозы специалистов показывают, что вероятность использования СДВ растет год от года. Поэтому при разработке концепции безопасности объекта необходимо учитывать и возможность СДВ по сетям электропитания, для чего, в первую очередь, необходимо провести классификацию технических средств СДВ. Однако, учитывая специфическое назначение данных средств и нежелание фирм их производящих широко афишировать свою работу, задача классификации оказалась не тривиальной. Возможная классификация современных технических средств СДВ по сетям электропитания, проведенная по результатам анализа, представлена на рис. 2.


Рис. 2. Классификация технических средств СДВ по сетям электропитания

Представленная классификация является достаточно понятной и дополнительных пояснений не требует, за исключением, пожалуй, класса “Специальные и другие ТС СДВ”. К этому классу отнесены, в частности, различные суррогатные ТС СДВ, имеющиеся под рукой. Например, в качестве технического средства воздействия может быть использована ближайшая трансформаторная подстанция, к части вторичной обмотки которой можно подключить ТС СДВ с емкостным накопителем, параметры которого подобраны так, что вторичная обмотка трансформатора, магнитопровод и емкостной накопитель образуют повышающий резонансный автотрансформатор. Такое силовое воздействие может вывести из строя все электронное оборудование, обслуживаемое данной подстанцией. К этому же классу отнесены и средства перепрограммирования источников бесперебойного питания (ИБП) с использованием, например, программных закладок. Такая закладка может быть активизирована соответствующей командой по сети электропитания, чтобы на короткое время перепрограммировать ИБП на максимально возможное выходное напряжение, что также приведет к выходу из строя подключенного к нему электронного оборудования.

В качестве примера высокой эффективности деструктивного воздействия ТС СДВ можно отметить относительно недорогие устройства с электролитическими конденсаторами, имеющие удельную объемную энергию, равную 2000 кДж/м3. Подобное устройство, размещенное в обычном кейсе, способно вывести из строя до 20 компьютеров одновременно. Ориентировочная стоимость такого кейса составляет от 10000 до 15000 дол. США. Ещё большую эффективность имеют молекулярные накопители (ионисторы), удельная объемная энергия которых достигает 10 МДж/м3. ТС СДВ, содержащее ионисторы, уже способно вывести из строя все компьютеры большого вычислительного центра. Стоимость такого технического средства ориентировочно составляет 50000 дол. США (стоимость и энергетические параметры ТС СДВ приведены для оценки эффективности защиты).

В последнее время на рынке обеспечения безопасности появилось большое количество технических средств, способных не только обнаруживать подозрительную технику, но одновременно и уничтожать её в случае необходимости. Ярким примером подобных технических средств является продукция французской фирмы “Cofroexport S.A.”, специализирующейся в области безопасности и радиокоммуникаций, в частности, так называемый, чемодан обнаружения радиозакладок, который обеспечивает вывод из строя электронных средств путем подключения к линии более высокого напряжения.

В настоящее время для проникновения энергии СДВ по сети питания имеется два основных канала:

  • кондуктивный путь через вторичный источник питания (ВИП);
  • наводки через паразитные емкостные и индуктивные связи, как внутренние, так и внешние (например, через сигнальные цепи и линии связи), причем, по особенностям схемотехники каналы воздействия могут быть как симметричные, так и несимметричные.

В качестве примера проведем оценку устойчивости компонентов основного элемента питания интегрированной системы безопасности – вторичного источника питания, типовая принципиальная схема которого приведена на рис. 3, а результаты оценки устойчивости элементов типового блока вторичного источника питания – в табл. 3.


Рис. 3. Принципиальная схема типового блока вторичного источника питания

Таблица 3. Результаты оценки устойчивости элементов ВИП к воздействию СДВ

Обозначение
элемента

Тип элемента

Энергопоглощающая
способность, Дж

Предельная
поглощающая
способность, Дж

Прочность
изоляции, В

Примечание

С1, С2 Конденс. 0,3   1200 Рабочее напряжение: 250 В переменное, 1000 В – постоянное
L1, L2 Дроссель 0,1   2500 Главное- изоляция между катушками
С3, С4 Конденс. 0,002   1200  
VR1 Варистор 20/40/70/140 соответственно

для диаметра 7/10/14/20 мм

(3...4000)х10-3   Быстродействие 25 нс, от наносекундных помех оборудование не защищает
VD1...VD4 Полупр. диод менее 1 (0,1...1000) х 10-3 600...1000 Допустимая амплитуда импульса тока 60/100/200 A для микросборок на 2/3/4 A
VT1 Транзистор менее 1 (20...1000)х10-3 500...800  
С5, С6 Конденс. 15   500 Изоляция может быть пробита при длительности импульса не менее 0,5 мс

Как видно из таблицы, элементы входного LC-фильтра имеют весьма низкую энергопоглощающую способность и не являются защитой против мощных импульсных помех. Поэтому, если LC-фильтр – единственное устройство защиты на входе ВИП, то ТС СДВ для достижения цели достаточно обеспечить возможность подвода мощной импульсной помехи с амплитудой 2 кВ и энергией 1...2 Дж с достаточно крутым фронтом.

В современных ВИП основные функции защиты от мощных помех принимает на себя варистор. Однако, несмотря на большие уровни рабочих токов, они имеют предельно допустимую рассеиваемую мощность в единицы ватт, поэтому при воздействии длинных импульсов с относительно небольшим током они выходят из строя, вызывая сгорание предохранителя на входе. В этом случае ТС СДВ необходима энергия 50...100 Дж, амплитуда – 1 кВ, длительность импульса – 0,1 с.

Для вывода из строя конденсаторов входного фильтра инвертора и диодов моста ТС СДВ требуется значительно меньшая энергия, причем, чтобы обойти варисторную защиту используют разницу в напряжении пробоя конденсаторов и напряжения эффективного ограничения напряжения варистором, которая составляет 70...120 В. Задача силового воздействия решается путем использования импульсов длительностью до 5 мс, амплитудой 500...600 В и энергией 15...25 Дж. В этом случае после пробоя конденсаторов дополнительно возникает импульс тока через диоды моста, который для горячего термистора доходит до 1000 А, что выводит диоды из строя. При таком воздействии весьма вероятен выход из строя транзисторов и других элементов инвертора, а также проход деструктивных импульсов на выход ВИП, что приведет к повреждению других узлов системы безопасности.

Особо необходимо отметить возможность мощного силового деструктивного воздействия с использованием наводок через паразитные емкости между элементами и узлами схемы. Установлено, что входные высоковольтные и выходные низковольтные цепи ВИП оборудования (например, компьютеров) имеют емкостную связь через паразитную емкость, равную 10...30 пФ, а паразитная емкость, равная 5 ... 10 пФ, связывает сеть питания с элементами материнской платы компьютера. Через эти паразитные емкости имеется возможность путем генерации в ТС СДВ высоковольтных импульсов с наносекундным временем нарастания полностью блокировать работу программно-аппаратных средств, в том числе обеспечить искажение данных, зависание компьютеров и сбои в работе программного обеспечения. Эти возможности деструктивного воздействия накладывают дополнительные требования к защите от импульсных помех.

По результатам анализа можно сделать вывод, что традиционные ВИП недостаточны для защиты компьютеров и технических средств безопасности от СДВ. Однако, между сетью питания и ВИП, как правило, устанавливается дополнительное устройство защиты (ИБП UPS, стабилизатор, фильтр, сетевой кондиционер и т.п.), которое необходимо также учитывать при оценке устойчивости к СДВ. В системах безопасности особенно широко в последнее время стали применяться источники бесперебойного питания UPS (Uninterruptible Power Supply), на которых необходимо остановиться особо. Эти устройства предназначены для улучшения качества энергии сети переменного тока и обеспечения бесперебойного электропитания оборудования при выходе из строя электросети.

По способу управления UPS разделяются на OFF-LINE и ON-LINE типы. Главное различие заключается в выборе основного канала передачи энергии к потребителю.

Для режима OFF-LINE в основном режиме переключатель каналов подключает вход UPS к выходу через ветвь, содержащую только входной фильтр. При этом аккумуляторы подзаряжаются от маломощного зарядного устройства, а напряжение с инвертора не поступает на выход источника. В режиме аккумуляторной поддержки, когда входное напряжение отклоняется от допустимых пределов или пропадает, переключатель каналов подключает ветвь, содержащую инвертор, и энергия к потребителю поступает от аккумуляторов.

Режим ON-LINE характеризуется постоянством включения ветви, содержащей мощное зарядное устройство, аккумулятор и инвертор на выход блока UPS. Подобная схема позволяет не только исключить время переключения, но и обеспечить гальваническую развязку вход-выход, иметь стабильное синусоидальное выходное напряжение. При выходе из строя какого-либо каскада в прямой ветви передачи энергии, перегрузках, а так же при разряде аккумуляторов, переключатель каналов подключает ветвь, соединяющую вход-выход через фильтр. Этот вспомогательный путь передачи энергии, получивший название байпас (BY PASS), имеет особое значение при СДВ и позволяет обойти защиту UPS для поражения более важных блоков системы безопасности, например, компьютера.

В последнее время появились линейно-интерактивные (line interactive) UPS, которые являются дальнейшим развитием технологии off-line. Они отличаются наличием на входе стабилизирующего автотрансформатора, что способствует стабилизации выходного напряжения UPS. В некоторых случаях, если допустимы перерывы в питании на несколько миллисекунд, линейно-интерактивные UPS оказываются предпочтительнее типа off-line и дешевле on-line устройств.

Обычно при СДВ по сети питания UPS выходит из строя, причем в этом случае срабатывает байпас и через него энергия ТС СДВ достигает цели в обход UPS. Кроме того, как правило, у тиристорных стабилизаторов, корректоров напряжения, переключателей сети при СДВ происходит самопроизвольное “отпирание тиристоров вопреки штатному алгоритму схемы управления с аварийным отключением или выходом из строя. Таким образом, традиционные устройства защиты питания не только не защищают от СДВ системы безопасности, но и сами весьма подвержены деструктивному воздействию. Основные рекомендации по защите систем безопасности от СДВ по сети электропитания приведены в табл. 4.

Таблица 4. Защита систем безопасности от СДВ по сети электропитания

Рекомендация по защите систем безопасности от СДВ

Примечание

На все фидеры, выходящие за пределы контролируемой службой безопасности (СБ) зоны, установить групповые устройства защиты (УЗ) от СДВ Групповые УЗ установить в зонах, подконтрольных СБ
На сеть электропитания серверов, систем охраны и сигнализации объекта установить индивидуальную защиту В зависимости от решаемых задач объем индивидуальной защиты может быть существенно расширен
Щитки питания, распределительные щиты, розетки, клеммы заземления и т.п. необходимо размещать в помещениях, контролируемых СБ Не рекомендуется установка розеток в слабо контролируемых помещениях (буфет, склад, гардероб и т.п.)
Используя анализатор неоднородности линии, снять контрольный портрет” электросети Контрольный “портрет снимается после завершения монтажа сети
Для выявления несанкционированного подключения к сети необходимо регулярно контролировать текущий портрет” электросети и сравнивать его с контрольным “портретом” Этот метод контроля особенно эффективен для обнаружения ТС СДВ последовательного типа
Текущее обслуживание и ремонт электрооборудования должны проводиться под контролем сотрудников службы безопасности  
Доступ к щитам питания и другим элементам электрооборудования должен быть ограничен Ограничение определяется соответствующими документами и мероприятиями
Все электрооборудование, в том числе, и бытового назначения, должно тщательно проверяться Особое внимание обратить на UPS, микроволновые печи, пылесосы, кондиционеры, аппараты для сварки
Организовать круглосуточный мониторинг сети электропитания с одновременной записью в журнале всех сбоев и повреждений оборудования, фиксацией времени сбоев и характера дефектов. Путем анализа результатов возможно своевременное обнаружение факта НСД В качестве регистраторов можно использовать широкий спектр приборов от простых счетчиков импульсов до комплексов с ПК
При закупке электрооборудования систем безопасности необходимо обращать внимание на степень его защиты от импульсных помех. Обычное оборудование должно иметь класс устойчивости не ниже А, ответственное – не ниже В По стандарту IEEE 587-1980 помеха

класса А: 0,5 мкс/6 кВ/200 А/1,6 Дж;

класса В: 0,5 мкс/6 кВ/500 А/4 Дж

Для защиты 1 рубежа лучше всего подходят специально разработанные помехозащищенные трансформаторные подстанции и суперфильтры. Класс защиты должен быть выше В, т.е. устройство защиты должно быть рассчитано на воздействие индуцированных напряжений от близких разрядов молний с возможным импульсным током до 40 кА Автоматические устройства переключения сети не защищают от СДВ из-за низкого быстродействия. Также малопригодны тиристорные стабилизаторы и корректоры
Для защиты 2 рубежа могут использоваться технические средства с меньшим запасом энергии, в том числе суперфильтры, корректоры напряжения и помехоподавляющие трансформаторы Суперфильтры помимо специальных фильтров и ограничителей напряжения могут содержать адаптивные схемы поглощения энергии СДВ
Для защиты 3 рубежа наиболее оптимальными являются помехоподавляющие трансформаторы (трансфильтры) или сочетание корректора напряжения, ограничителя и фильтра. Трансфильтр гораздо эффективней остальных типов фильтров и корректоров напряжения Современные конструкции трансфильтров обеспечивают работоспособность компьютера при воздействии мощной импульсной помехи с амплитудой до 10 кВ

Силовое деструктивное воздействие по проводным слаботочным цепям

Для проникновения энергии СДВ по проводным линиям необходимо преодолеть предельную поглощающую способность компонентов, которые могут быть использованы во входных цепях. Анализ показывает, что для деградации этих компонентов (микросхем, транзисторов, диодов и т.п.) достаточно воздействия импульса с энергией 1 1000 мкДж, причем, этот импульс может быть весьма коротким, т.к. время пробоя МОП-структуры или pn-перехода составляет 10 – 1000 нс. Как известно, напряжения пробоя переходов составляют от единиц до десятков вольт. Так у арсенидгаллиевых приборов это напряжение равно 10 В, запоминающие устройства имеют пороговые напряжения около 7 В, логические интегральные схемы (ИС) на МОП-структурах – от 7 до 15 В. И даже кремниевые сильноточные биполярные транзисторы, обладающие повышенной прочностью к перегрузкам, имеют напряжение пробоя в диапазоне от 15 до 65 В. Отсюда можно сделать вывод о том, что для СДВ по проводным каналам требуется энергия на несколько порядков ниже, чем по сети питания и деструктивное воздействие может быть реализовано с помощью относительно простых технических средств, обеспечивающих высокую вероятность вывода объекта атаки из строя. В частности, в данном случае для СДВ может быть использован любой электромагнитный шокер.

Дальнейший анализ целесообразно проводить с учетом наличия на входе устройств защиты от импульсных помех. В этом случае, защищенные компоненты имеют существенно большую предельную энергопоглощающую способность (до 1 – 10 Дж для низкоскоростных устройств и до 1 – 10 мДж – для высокоскоростных). Однако из-за высоких цен качественные устройства защиты пока не получили в России широкого применения. Классификация ТС СДВ по проводным линиям приведена на рис. 4.


Рис. 4. Классификация ТС СДВ по проводным слаботочным линиям

Основные рекомендации по защите систем безопасности от СДВ по проводным линиям приведены в табл. 5.

Таблица 5. Защита системы безопасности от СДВ по проводным линиям

Рекомендация по защите систем безопасности от СДВ

Примечание

На все проводные линии связи и аварийно-охранно-пожарной сигнализации, которые выходят за пределы зоны контроля службы безопасности, установить устройства защиты от СДВ Места для установки шкафов с УЗ выбираются в зонах, подконтрольных службе безопасности
Для выявления несанкционированного подключения к проводным линиям с помощью анализатора неоднородности снять контрольный “портрет” сети. Систематическое сравнение текущего и контрольного “портретов” сети обеспечивает обнаружение НСД Контрольный “портрет снимается только после полного завершения монтажа сети проводных линий
Ремонтные работы и текущее обслуживание оборудования, линий связи и цепей сигнализации системы безопасности необходимо производить под контролем службы безопасности  
Доступ к линиям связи и сигнализации, датчикам, кросс-панелям, мини-АТС и другим элементам системы безопасности должен быть ограничен Ограничение обеспечивается соответствующими документами и техническими средствами
Нежелательно размещение оборудования сети (маршрутизаторов, ТС, кросса и т.п.) на внешних стенах объекта В этом случае велика вероятность успешного СДВ из неконтролируемой зоны
Желательно не применять общепринятую топологию прокладки проводных линий связи и сигнализации вдоль стены параллельно друг другу, т.к. она является идеальной для атаки на объект с помощью ТС СДВ с бесконтактным емкостным инжектором. Целесообразно использовать многопарные кабели связи с витыми парами В противном случае с помощью плоского накладного электрода и ТС СДВ оборудование может быть выведено из строя злоумышленником за 10 – 30 с
При закупке оборудования систем безопасности необходимо учитывать степень его защиты от импульсных помех. Минимальная степень защищенности должна соответствовать ГОСТ Р 50746-95 при степени жесткости испытаний 3 – 4 Для более подробной информации см. журнал “Конфидент. Защита информации”, № 2, 1998
Для защиты 1 рубежа необходимо установить защиту всех проводных линий от перенапряжений с помощью воздушных разрядников и варисторов. Кабели связи и сигнализации необходимо экранировать с использованием металлоруковов, труб и коробов. Защита устанавливается как между линиями связи, так и между каждым из проводников и контуром заземления
Для защиты 2 рубежа можно использовать комбинированные низкопороговые помехозащитные схемы из таких элементов как газовые разрядники, варисторы, комбинированные диодные ограничители, RС- и LC- фильтры и другие элементы. Желательно установить групповое устройство защиты, выполненное в виде шкафа с замком
Для защиты 3 рубежа необходимо применять схемы защиты, максимально приближенные к защищаемому оборудованию Схемы защиты 3 рубежа обычно интегрируются с разъемами, розетками, компьютерами и т.п.

Беспроводное силовое деструктивное воздействие

Наиболее скрытым и наиболее эффективным является канал силового деструктивного воздействия по эфиру с использованием мощного короткого электромагнитного импульса. В этом случае стало возможным реализовать достаточно компактные электромагнитные технические средства СДВ, размещаемые за пределами объекта атаки и на достаточном для маскировки атаки удаления от коммуникаций. Конструкция электромагнитного ТС СДВ на примере генератора с виртуальным катодом (виркатора) приведена на рис. 5.


Рис. 5. Конструкция высокочастотного электромагнитного ТС СДВ

Как видно из рис. 5 конструкция виркатора является достаточно простой. Так же просто можно описать принцип его работы. При подаче на анод положительного потенциала порядка 105 – 106 В вследствие взрывной эмиссии с катода к аноду устремляется поток электронов, который, пройдя через сетку анода, начинает тормозиться собственным “кулоновским полем”. Это поле отражает поток электронов обратно к аноду, образуя виртуальный катод. Пройдя через анод в обратном направлении, поток электронов вновь тормозиться у поверхности реального катода. В результате такого взаимодействия формируется облако электронов, колеблющееся между виртуальным и реальным катодами. Образованное на частоте колебаний электронного облака СВЧ-поле излучается антенной через обтекатель в пространство. Токи в виркаторах, при которых возникает генерация, составляют величины 1 – 10 кА. Экспериментально от виркаторов уже получены мощности от 170 кВт до 40 ГВт в сантиметровом и дециметровом диапазонах.

Инжекция мощного электромагнитного импульса у такого ТС СДВ производится с помощью специальной антенной системы, от эффективности которой во многом зависят оперативно-технические характеристики всего комплекса СДВ. Несмотря на наличие направленной антенны мощный электромагнитный сигнал (ЭМС) воздействует при атаке объекта на все компоненты в пределах зоны электромагнитного воздействия и на все контуры, образованные связями между элементами оборудования, поэтому, не являясь еще средствами селективного воздействия, ТС СДВ наносят глобальные поражения, оправдывая установившееся понятие “электромагнитной бомбы”.

Актуальность проблемы защиты от электромагнитного СДВ возрастает еще и потому, что в настоящее время некоторые исследовательские работы закончились разработкой опытных образцов информационного оружия. Так представляет интерес американский образец оружия данного класса под условным названием MPS-II, который представляет собой генератор высокомощного СВЧ-излучения , использующий зеркальную антенну диаметром 3 м. Данный образец развивает импульсную мощность около 1 ГВт (напряжение 265 кВ, ток 3,5 кА) и обладает большими возможностями ведения информационной войны. Так в руководстве по его применению и техническому обслуживанию определена основная его характеристика: зона поражения – 800 м от устройства в секторе 24 градуса [2]. Причем, важно отметить, что лицам с электронными стимуляторами сердца доступ к установке запрещен. Используя данную установку, можно эффективно стирать не только кредитные карточки, но и записи на магнитных носителях.

Использование новых технологий, в частности, фазированных антенных решеток, позволяет осуществить СДВ сразу на несколько целей. Примером может служить система GEM2, разработанная по заказу фирмы Boeing южно-африканской фирмой PCI, которая состоит из 144 твердотельных излучателей импульсов длительностью менее 1 нс с суммарной мощностью 1 ГВт. Данная система может устанавливаться на подвижных объектах. Даже рассмотренные примеры говорят о больших возможностях и высокой эффективности нового информационного оружия, что необходимо учитывать при обеспечении защиты информации, тем более, что во время войны в Персидском заливе уже было зафиксировано боевое применение подобного оружия в ракетном варианте.

Анализ показывает, что наиболее опасными ТС СДВ для интегрированных систем безопасности являются технические средства силового деструктивного воздействия по эфиру с использованием электромагнитного импульса (беспроводные ТС СДВ). Особенно это относится к мощным мобильным ТС СДВ, деструктивное действие которых может осуществляться с неохраняемой территории. К сожалению, недостаток открытой информации по данному виду ТС СДВ существенно осложняет их классификацию. Классификация беспроводных ТС СДВ, использованная в данной работе, приведена на рис. 6.


Рис. 6. Классификация ТС СДВ по эфиру (беспроводных ТС СДВ)

Проводя анализ возможностей использования ТС СДВ, необходимо отметить, что наиболее удобными в применении и наиболее продвинутыми в исследованиях являются высокочастотные электромагнитные средства СДВ, в том числе, магнетроны, клистроны, гиротроны, лазеры на свободных электронах, плазменно-лучевые генераторы, а также рассмотренные выше виркаторы, которые хотя и имеют низкий КПД (единицы процентов), но легче всего перестраиваются по частоте. Наиболее широкополосными являются плазменно-лучевые генераторы, а особенностью гиротронов является то, что они работают в миллиметровом диапазоне с высоким КПД (десятки процентов).

Однако, одним из первых образцов электромагнитного оружия, который был продемонстрирован еще в конце 50-х годов в Лос-Аламосской национальной лаборатории США, является генератор с взрывным сжатием магнитного поля [3].

В дальнейшем было разработано и испытано множество модификаций такого генератора, например, в США, развивавших энергию воздействия в десятки мегаджоулей, причем, уровень пиковой мощности достигал десятков тераватт, а производимый генератором ток в 10 – 1000 раз превышал ток, порождаемый разрядом молнии [4]. В настоящее время некоторые из этих образцов уже приняты на вооружение и прошли успешную проверку в Персидском заливе, в Югославии и т.д. К сожалению, появилось много примеров того, как через какое-то время военное оборудование становится собственностью террористов. Особенно часто это случается с техническими средствами тактического звена (средствами малой мощности). И не стоит ждать, когда “гром грянет”. Несмотря на то, что статистика использования СДВ сегодня не ведется (как правило, инциденты списываются на природные катаклизмы, такие как гроза, статика, случайные совпадения и т.п., и идентифицировать их очень сложно), вероятность использования СДВ сегодня весьма велика. Поэтому проблема защиты от СДВ, являясь весьма актуальной, требует своего решения. Основные рекомендации по защите систем безопасности от электромагнитного СДВ по эфиру приведены в табл. 6.

Таблица 6. Защита систем безопасности от электромагнитного СДВ по эфиру

Рекомендация по защите систем безопасности от СДВ

Примечание

Основным методом защиты от СДВ является экранирование на всех рубежах как аппаратуры, так и помещений. При невозможности экранирования всего помещения необходимо прокладывать линии связи и сигнализации в металлических трубах или по широкой заземленной полосе металла, а также использовать специальные защитные материалы В качестве экранирующего материала можно использовать металл, ткань, защитную краску, пленку, специальные материалы
Многорубежная защита от СДВ по эфиру организуется аналогично защите по сети питания и по проводным линиям См. аналогичные пункты табл.4, 5
Вместо обычных каналов связи использовать, по возможности, волоконно-оптические линии Использование волоконно-оптических линий защищает также от возможной утечки информации
В защищенных помещениях особое внимание обратить на защиту по сети электропитания, используя, в первую очередь, разрядники и экранированный кабель питания Обратить внимание, что традиционные фильтры питания от помех здесь не спасают от СДВ
Учесть необходимость устранения любых паразитных излучений как защищаемой, так и вспомогательной аппаратуры объекта Излучения не только демаскируют аппаратуру, но и способствуют прицельному наведению беспроводных ТС СДВ
Персоналу службы безопасности необходимо учитывать, что СДВ по эфиру организуется, как правило, из неконтролируемой службой безопасности зоны, в то время как его деструктивное действие осуществляется по всей территории объекта Расширение зоны контроля службы безопасности возможно за счет использования телевизионного мониторинга за пределами объекта

Более подробную информацию по защите от ЭТ можно найти в приведенной литературе и на сайтах сети Интернет.

Таким образом, силовое деструктивное воздействие, реализуемое по проводным и беспроводным каналам, а также по сетям питания, в настоящее время является серьезным оружием против систем защиты объектов, в частности, интегрированных систем безопасности и защищенных помещений. Это оружие оправдывает свое название “электромагнитной бомбы” и по эффективности воздействия является более грозным, чем программное разрушающее оружие для компьютерных сетей. Аналитические исследования показывают, что новые технологии делают технические средства силового деструктивного воздействия все более перспективными для применения и требуют к себе большего внимания, в первую очередь, со стороны служб безопасности и разработчиков систем защиты. Кстати, от СДВ страдает не только техника, но и люди. Но это уже другая, не менее актуальная проблема, о которой читайте в следующих номерах журнала.

Литература

1. уков В.С. Безопасность: технологии, средства, услуги. — М.: КУДИЦ - ОБРАЗ, 2001.
2. Winn Schwartau. More about HERP than some? — Information Warfare: Thunder’s month press, New York, 1996.
3. Carlo Kopp. The E-bomb — a Weapon of Electronical Mass Destruction. — Information Warfare: Thunder’s month press, New York, 1996.
4. David A. Fulghum. Microwave Weapons Await a Future War. — Aviation Week and Space Technology, June 7, 1999.